NUMERICAL ANALYSIS
 Assignment -3 (week 3)
 Total Marks - 25
 Posted on - 7/8/2017 (Monday);
 To be submitted on or before-16/8/2017 (Wednesday), 23.59 hours.

Problems on

- Inverse interpolation
- Numerical Differentiation

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem which you will have to show in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. Use the forward difference and backward difference formulas:
$f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-\frac{h}{2} f^{\prime \prime}\left(\xi_{1}\right)$ and $f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{h}+\frac{h}{2} f^{\prime \prime}\left(\xi_{2}\right)$ to determine each missing entry in the following table:

x	0.5	0.6	0.7
$f(x)$	0.4794	0.5646	0.6442
$f^{\prime}(x)$	$?$	$?$	$?$

Fill in the blanks.
(a) $f^{\prime}(0.5) \simeq$ \qquad (b) $f^{\prime}(0.6) \simeq$ \qquad
\qquad
(c) $f^{\prime}(0.7) \simeq$ \qquad .

Show your work for the solution of problem 1 in the space provided below.
2. Using the following table of values of $f(x)$, estimate $f^{\prime}(2.0)$ with five-point midpoint formula

x	1.8	1.9	2.0	2.1	2.2
$f(x)$	10.889	12.703	14.778	17.148	19.855

Fill in the blank: $f^{\prime}(2.0) \simeq$ \qquad . (3 marks)

Show your work for the solution of problem 2 in the space provided below.
3. Use the following five-point end point formula
$f^{\prime}\left(x_{0}\right)=\frac{1}{12 h}\left[-25 f\left(x_{0}\right)+48 f\left(x_{0}+h\right)-36 f\left(x_{0}+2 h\right)+16 f\left(x_{0}+3 h\right)-3 f\left(x_{0}+4 h\right)\right]+$ $\frac{h^{4}}{5} f^{(5)}(\xi)$ where $x_{0}<\xi<x_{0}+4 h$, determine $f^{\prime}(1.8)$, taking $h=0.1$ from the following table of values of $f(x)$.

x	1.8	1.9	2.0	2.1	2.2
$f(x)$	10.889	12.703	14.778	17.148	19.855

Fill in the blank:
$f^{\prime}(1.8) \simeq$ \qquad (3 marks)

Show your work for the solution of problem 3 in the space provided below.
4. Use the most accurate three-point formula to determine each missing entry in the folowing table:

x	1.1	1.2	1.3	1.4
$f(x)$	9.025	11.023	13.463	16.444
$f^{\prime}(x)$	$?$	$?$	$?$	$?$

Fill in the blanks:
(a) $f^{\prime}(1.1) \simeq$ \qquad (b) $f^{\prime}(1.2) \simeq$ \qquad
(c) $f^{\prime}(1.3) \simeq$ \qquad (d) $f^{\prime}(1.4) \simeq$ \qquad (8 marks)

Show your work for the solution of problem 4 in the space provided below.
5. A differential rule of the form $f^{\prime}\left(x_{0}\right)=\alpha_{0} f_{0}+\alpha_{1} f_{1}+\alpha_{2} f_{2}$, where $x_{1}=x_{0}+k h$, $k=0,1,2$ and $f_{k}=f\left(x_{k}\right), k=0,1,2$ is given. Find the values of α_{0}, α_{1} and α_{2} so that the rule is exact for polynomials of degree ≤ 2. Find the error.
Fill in the blanks:
(a) $\alpha_{0}=$ \qquad (b) $\alpha_{1}=$ \qquad (c) $\alpha_{2}=$
(d) If the error term is given by $C h^{\alpha} f_{0}^{(\beta)}(\xi)$, then
$|C|=$ \qquad $\alpha=$ \qquad , $\beta=$ \qquad
(e) $f^{\prime}\left(x_{0}\right)=$ \qquad .
\qquad

Show your work for the solution of problem 5 in the space provided below.

