NUMERICAL ANALYSIS Assignment -3 (week 3) Total Marks - 25 Posted on - 7/8/2017 (Monday); To be submitted on or before-16/8/2017 (Wednesday), 23.59 hours.

Problems on

- Inverse interpolation
- Numerical Differentiation

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem **which you will have to show** in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. Use the forward difference and backward difference formulas: $f'(x_0) = \frac{f(x_0+h)-f(x_0)}{h} - \frac{h}{2}f''(\xi_1)$ and $f'(x_0) = \frac{f(x_0)-f(x_0-h)}{h} + \frac{h}{2}f''(\xi_2)$ to determine each missing entry in the following table:

x	0.5	0.6	0.7
f(x)	0.4794	0.5646	0.6442
f'(x)	?	?	?

Fill in the blanks.

(a) $f'(0.5) \simeq$, (b) $f'(0.6) \simeq$,		_,
$(c)f'(0.7) \simeq$	·	(4 marks)	

Show your work for the solution of problem 1 in the space provided below.

2. Using the following table of values of f(x), estimate f'(2.0) with five-point midpoint formula

0	r	1.8	1.9	2.0	2.1	2.2	
f(x)	10.889	12.703	14.778	17.148	19.855	•

Fill in the blank: $f'(2.0) \simeq$ (3 marks)

Show your work for the solution of problem 2 in the space provided below.

3. Use the following five-point end point formula

 $f'(x_0) = \frac{1}{12h} \left[-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h) \right] + \frac{h^4}{5} f^{(5)}(\xi)$ where $x_0 < \xi < x_0 + 4h$, determine f'(1.8), taking h = 0.1 from the following table of values of f(x).

x 1.8		1.9	2.0	2.1	2.2	
f(x)	10.889	12.703	14.778	17.148	19.855	

Fill in the blank: $f'(1.8) \simeq$ _____.

(3 marks)

Show your work for the solution of problem 3 in the space provided below.

4. Use the most accurate three-point formula to determine each missing entry in the following table:

	x	1.1	1.2	1.3	1.4	
	$\int f(x)$	9.025	11.023	13.463	16.444	
	f'(x)	?	?	?	?	
Fill in the blanks: (a) $f'(1.1) \simeq$, (b) f	$'(1.2) \simeq -$,	
$(c)f'(1.3) \simeq$		_, (d) f'	$'(1.4) \simeq -$			(8 marks)

Show your work for the solution of problem 4 in the space provided below.

5. A differential rule of the form $f'(x_0) = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2$, where $x_1 = x_0 + kh$, k = 0, 1, 2 and $f_k = f(x_k)$, k = 0, 1, 2 is given. Find the values of α_0, α_1 and α_2 so that the rule is exact for polynomials of degree ≤ 2 . Find the error. Fill in the blanks: (a) $\alpha_0 = \underline{\qquad}$, (b) $\alpha_1 = \underline{\qquad}$, (c) $\alpha_2 = \underline{\qquad}$. (d) If the error term is given by $Ch^{\alpha} f_0^{(\beta)}(\xi)$, then $|C| = \underline{\qquad}$, $\alpha = \underline{\qquad}$, $\beta = \underline{\qquad}$. (e) $f'(x_0) = \underline{\qquad}$. (7 marks)

Show your work for the solution of problem 5 in the space provided below.